FEM ConstraintHeatflux/ro

FEM ConstraintHeatflux

Menu location
Model → Thermal Constraints → Constraint heatflux
Workbenches
FEM
Default shortcut
None
Introduced in version
-
See also
FEM tutorial

Descriere

Această constrângere specifică schimbul de căldură (transferul de căldură al filmului) al unei suprafețe la temperatura T și cu un coeficient de schimb termic h și o temperatură ambiantă T0 . Fluxul de căldură convectiv q poate satisface: q = h(T -T0)

Heat sink with convective heat flux load on the surfaces exposed to air

Utilizare

  1. Click pe sau selctați ModelThermal Constraints Constraint heatflux din meniul principal.
  2. Selectați în vizualizarea 3D suprafața/elepe care constrângerea trebuie aplicată.
  3. Introduceți temperatura dorită a suprafeței, coeficientul filmului și temperatura ambiantă.

Properties

  • DateAmbient Temp: Ambient temperature (for Convection and Radiation modes).
  • DateFilm Coef: Film coefficient (for Convection mode).
  • DateEmissivity: Emissivity (for Radiation mode).
  • DateDFlux: Distributed heat flux (for DFlux mode).
  • DateConstraint Type: Type of heat flux load: DFlux, Convection or Radiation.
  • DateCavity Radiation - introduced in 1.1: Enable cavity (surface-to-surface) radiation (for Radiation mode).
  • DateCavity Name - introduced in 1.1: Name of the cavity definition to which the heat flux constraint belongs (for Radiation mode).
  • DateEnable Amplitude - introduced in 1.1: Enables the use of CalculiX's amplitude for time variation of the heat flux load. At a given time, magnitude of the load is multiplied by the amplitude value corresponding to that time. Linear interpolation is used between the specified values. Constant values are used outside of the specified range.
  • DateAmplitude Values - introduced in 1.1: Amplitude table in the following format:
time_1, amplitude_value_1
...
Default is linear increase from 0% at t=0 to 100% at t=1:
0, 0
1, 1

Notă

  1. Constrângerea utilizează *FILM card in CalculiX. constrângerea fluxului de căldură este explicat la http://web.mit.edu/calculix_v2.7/CalculiX/ccx_2.7/doc/ccx/node203.html